Morphological, physiological and metabolic comparisons between runner-like and sheet-like inbred lines of a colonial hydroid.
نویسنده
چکیده
Hydractiniid hydroids display a range of morphological variation from sheet-like forms (i.e. closely spaced polyps with high rates of stolon branching) to runner-like forms (i.e. widely spaced polyps with low rates of stolon branching), thus exemplifying the patterns of heterochrony found in many colonial animals. A sheet-like and a runner-like inbred line of Podocoryne carnea were produced to investigate this heterochronic variation further. Selection on colony morphology at the time of the initiation of medusa production resulted in dramatic differences by the F5 and F6 generations. Compared with colonies of the sheet-like inbred line, runner-like colonies exhibited smaller sizes at the initiation of medusa production, more irregular colony shapes and diminished stolon development relative to polyp development. In addition to these differences in colony morphology, runner-like colonies also exhibited larger medusae and a greater amount of gastrovascular flow to the peripheral stolons. To assess differences in the metabolic capacity underlying this variaton in flow, the redox state of the polyp epitheliomuscular cells was measured using the fluorescence of NAD(P)H. In response to feeding-induced changes in gastrovascular flow, runner-like colonies show greater redox variation than sheet-like ones, plausibly corresponding to the greater amounts of flow generated by the former colonies relative to the latter. Perturbing the system with dilute solutions of 2,4-dinitrophenol similarly indicates that runner-like colonies contain more functionally oxidizable NAD(P)H. The correlation between gastrovascular flow and morphological differences supports the hypothesis that the former mediates the timing of colony development, perhaps in concert with the observed variation in the redox state of polyp epitheliomuscular cells.
منابع مشابه
Physiological characterization of stolon regression in a colonial hydroid.
As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here, stolon regression is ident...
متن کاملCauses and consequences of stolon regression in a colonial hydroid.
A cnidarian colony can be idealized as a group of feeding polyps connected by tube-like stolons. Morphological variation ranges from runner-like forms with sparse polyp and stolon development to sheet-like forms with dense polyp and stolon development. These forms have typically been considered in a foraging context, consistent with a focus on rates of polyp development relative to stolon elong...
متن کاملInvestigation of Diversity and Classification of Some Barley Lines using Physiological and Morphological Characteristics
Barley (Hordeum vulgare L.) as one of the main crops is important economically for Iran. Genetic diversity and it`s evaluation is foundation of plant breeding projects. Awareness about genetic variation is effective in selection of parental lines for future breeding programs. This study was aimed to evaluate both morphological and physiological characteristics followed by classification of 18 b...
متن کاملSynthesis of porous CdO sheet-like nanostructure based on soft template model and its application in dye pollutants adsorption
In this work, the synthesis of porous structure of cadmium oxide with multilayered sheet-like morphology in nano-meter size using adipic acid as soft template by solvothermal/thermal decomposition process is reported. Chemical analyses exhibited that the formation of porous sheet-like structure is originated from bidentate coordination mode of adipate units to Cd-center. It was found that the c...
متن کاملRedox signaling in the growth and development of colonial hydroids.
Redox signaling provides a quick and efficient mechanism for clonal or colonial organisms to adapt their growth and development to aspects of the environment, e.g. the food supply. A 'signature' of mitochondrial redox signaling, particularly as mediated by reactive oxygen species (ROS), can be elucidated by experimental manipulation of the electron transport chain. The major sites of ROS format...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 201 Pt 20 شماره
صفحات -
تاریخ انتشار 1998